Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38577764

ABSTRACT

Sap-feeding insects often maintain two or more nutritional endosymbionts that act in concert to produce compounds essential for insect survival. Many mealybugs have endosymbionts in a nested configuration: one or two bacterial species reside within the cytoplasm of another bacterium, and together, these bacteria have genomes that encode interdependent sets of genes needed to produce key nutritional molecules. Here, we show that the mealybug Pseudococcus viburni has three endosymbionts, one of which contributes only two unique genes that produce the host nutrition-related molecule chorismate. All three bacterial endosymbionts have tiny genomes, suggesting that they have been coevolving inside their insect host for millions of years.


Subject(s)
Hemiptera , Symbiosis , Animals , Phylogeny , Symbiosis/genetics , Hemiptera/genetics , Hemiptera/microbiology , Insecta , Bacteria/genetics
2.
PLoS Biol ; 22(4): e3002577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626194

ABSTRACT

The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.


Subject(s)
Bacteria , Eukaryota , Animals , Bacteria/genetics , Eukaryota/genetics , Genome, Bacterial/genetics , Symbiosis/genetics , Bacterial Physiological Phenomena , Phylogeny
3.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38174624
4.
Genome Biol Evol ; 15(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37267326

ABSTRACT

Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.


Subject(s)
Alphaproteobacteria , Flavobacteriaceae , Hemiptera , Animals , Phylogeny , Hemiptera/microbiology , Symbiosis/genetics , Flavobacteriaceae/genetics , Alphaproteobacteria/genetics , Genome, Bacterial , Gene Dosage , Evolution, Molecular
5.
Mol Biol Evol ; 39(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36468441
6.
Mol Biol Evol ; 39(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35801562

ABSTRACT

Prokaryotic genomes are usually densely packed with intact and functional genes. However, in certain contexts, such as after recent ecological shifts or extreme population bottlenecks, broken and nonfunctional gene fragments can quickly accumulate and form a substantial fraction of the genome. Identification of these broken genes, called pseudogenes, is a critical step for understanding the evolutionary forces acting upon, and the functional potential encoded within, prokaryotic genomes. Here, we present Pseudofinder, an open-source software dedicated to pseudogene identification and analysis in bacterial and archaeal genomes. We demonstrate that Pseudofinder's multi-pronged, reference-based approach can detect a wide variety of pseudogenes, including those that are highly degraded and typically missed by gene-calling pipelines, as well newly formed pseudogenes containing only one or a few inactivating mutations. Additionally, Pseudofinder can detect genes that lack inactivating substitutions but experiencing relaxed selection. Implementation of Pseudofinder in annotation pipelines will allow more precise estimations of the functional potential of sequenced microbes, while also generating new hypotheses related to the evolutionary dynamics of bacterial and archaeal genomes.


Subject(s)
Genome, Archaeal , Pseudogenes , Bacteria/genetics , Prokaryotic Cells , Pseudogenes/genetics , Software
7.
Nat Commun ; 13(1): 2634, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551185

ABSTRACT

Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. In other fungal symbioses, carbohydrate subsidies correlate with reductions in plant cell wall-degrading enzymes, but whether this is true of lichen fungal symbionts (LFSs) is unknown. Here, we predict genes encoding carbohydrate-active enzymes (CAZymes) and sugar transporters in 46 genomes from the Lecanoromycetes, the largest extant clade of LFSs. All LFSs possess a robust CAZyme arsenal including enzymes acting on cellulose and hemicellulose, confirmed by experimental assays. However, the number of genes and predicted functions of CAZymes vary widely, with some fungal symbionts possessing arsenals on par with well-known saprotrophic fungi. These results suggest that stable fungal association with a phototroph does not in itself result in fungal CAZyme loss, and lends support to long-standing hypotheses that some lichens may augment fixed CO2 with carbon from external sources.


Subject(s)
Ascomycota , Lichens , Ascomycota/metabolism , Carbohydrate Metabolism , Carbon , Cellulose/metabolism
8.
Mol Ecol ; 30(17): 4155-4159, 2021 09.
Article in English | MEDLINE | ID: mdl-34232528

ABSTRACT

Lichen fungi live in a symbiotic association with unicellular phototrophs and most have no known aposymbiotic stage. A recent study in Molecular Ecology postulated that some of them have lost mitochondrial oxidative phosphorylation and rely on their algal partners for ATP. This claim originated from an apparent lack of ATP9, a gene encoding one subunit of ATP synthase, from a few mitochondrial genomes. Here, we show that while these fungi indeed have lost the mitochondrial ATP9, each retain a nuclear copy of this gene. Our analysis reaffirms that lichen fungi produce their own ATP.


Subject(s)
Genome, Mitochondrial , Lichens , Adenosine Triphosphate , Fungi , Lichens/genetics , Symbiosis/genetics
9.
Annu Rev Cell Dev Biol ; 37: 115-142, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34242059

ABSTRACT

Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood.


Subject(s)
Bacteria , Organelles , Bacteria/genetics , Eukaryota , Eukaryotic Cells , Genomics , Host-Pathogen Interactions/genetics
10.
Genome Biol Evol ; 13(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34061185

ABSTRACT

Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrient-poor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provision these same nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in its cytoplasm. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared with their closest nonendosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to an endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved codependencies with each other, Tremblaya, and their insect host.


Subject(s)
Betaproteobacteria , Gammaproteobacteria , Hemiptera , Animals , Betaproteobacteria/genetics , Gammaproteobacteria/genetics , Genome, Bacterial , Hemiptera/genetics , Hemiptera/microbiology , Phylogeny , Symbiosis/genetics
11.
Microbiol Resour Announc ; 10(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479002

ABSTRACT

We characterized the complete genome sequence of Siphoviridae bacteriophage Erla, an obligatory lytic subcluster EA1 bacteriophage infecting Microbacterium foliorum NRRL B-24224, with a capsid width of 65 nm and a tail length of 112 nm. The 41.5-kb genome, encompassing 62 predicted protein-coding genes, is highly similar (99.52% identity) to that of bacteriophage Calix.

12.
Cell ; 179(3): 703-712.e7, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31587897

ABSTRACT

Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes.


Subject(s)
Bacteria/genetics , Gene Transfer, Horizontal , Hemiptera/genetics , Peptidoglycan/biosynthesis , Symbiosis , Animals , Bacteria/pathogenicity , Genes, Bacterial , Hemiptera/microbiology , Host-Pathogen Interactions , Insect Proteins/genetics , Insect Proteins/metabolism , Peptidoglycan/genetics
13.
mBio ; 10(3)2019 06 18.
Article in English | MEDLINE | ID: mdl-31213566

ABSTRACT

Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, "Candidatus Hodgkinia cicadicola" (Alphaproteobacteria) and "Ca Sulcia muelleri" (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original "Ca Hodgkinia cicadicola" genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of "Ca Sulcia muelleri" and "Ca Hodgkinia cicadicola" is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5' and 3' ends and seem to undergo nucleotide modification. Surprisingly, we found that most "Ca Hodgkinia cicadicola" and "Ca Sulcia muelleri" tRNAs exist as tRNA halves. We hypothesize that "Ca Sulcia muelleri" and "Ca Hodgkinia cicadicola" tRNAs function in bacterial translation but require host-encoded enzymes to do so.IMPORTANCE The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5' and 3' ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Hemiptera/microbiology , RNA, Transfer/genetics , Symbiosis , Animals , Evolution, Molecular , Female , Phylogeny , Protein Modification, Translational
14.
Curr Biol ; 29(12): R570-R572, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31211975

ABSTRACT

Symbiotic fungi associated with plant roots can shuttle a key nutrient through their hyphal network in response to resource inequality. This need-based transport optimizes trade conditions for carbon with plants.


Subject(s)
Mycorrhizae , Carbon , Fungi , Phosphorus , Plant Roots , Plants , Socioeconomic Factors , Symbiosis
15.
Curr Biol ; 29(11): R485-R495, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31163163

ABSTRACT

Host-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time. But recent evidence suggests that this stable state is often born from turbulent and conflicting origins, and that the apparent stability of many beneficial endosymbiotic relationships - although certainly real in many cases - is not an inevitable outcome of these associations. Here we review how stable endosymbioses form, how they are maintained, and how they sometimes break down and are reborn. We focus on relationships formed by insects and their resident microorganisms because these symbioses have been the focus of significant empirical work over the last two decades. We review these relationships over five life stages: origin, birth, middle age, old age, and death.


Subject(s)
Bacterial Physiological Phenomena , Enterobacteriaceae/physiology , Fungi/physiology , Insecta/microbiology , Symbiosis/physiology , Animals
16.
Nature ; 568(7750): 41-42, 2019 04.
Article in English | MEDLINE | ID: mdl-30944488
17.
J Hered ; 110(2): 247-256, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30590568

ABSTRACT

Mitochondrial genomes can provide valuable information on the biology and evolutionary histories of their host organisms. Here, we present and characterize the complete coding regions of 107 mitochondrial genomes (mitogenomes) of cicadas (Insecta: Hemiptera: Auchenorrhyncha: Cicadoidea), representing 31 genera, 61 species, and 83 populations. We show that all cicada mitogenomes retain the organization and gene contents thought to be ancestral in insects, with some variability among cicada clades in the length of a region between the genes nad2 and cox1, which encodes 3 tRNAs. Phylogenetic analyses using these mitogenomes recapitulate a recent 5-gene classification of cicadas into families and subfamilies, but also identify a species that falls outside of the established taxonomic framework. While protein-coding genes are under strong purifying selection, tests of relative evolutionary rates reveal significant variation in evolutionary rates across taxa, highlighting the dynamic nature of mitochondrial genome evolution in cicadas. These data will serve as a useful reference for future research into the systematics, ecology, and evolution of the superfamily Cicadoidea.


Subject(s)
Genome, Mitochondrial , Genomics , Hemiptera/genetics , Animals , Anticodon , DNA, Ribosomal Spacer , Gene Order , Genetic Variation , Genomics/methods , Genotype , Locus Control Region , Phylogeny , RNA, Transfer/genetics , Symbiosis
18.
mBio ; 9(6)2018 11 13.
Article in English | MEDLINE | ID: mdl-30425149

ABSTRACT

For insects that depend on one or more bacterial endosymbionts for survival, it is critical that these bacteria are faithfully transmitted between insect generations. Cicadas harbor two essential bacterial endosymbionts, "Candidatus Sulcia muelleri" and "Candidatus Hodgkinia cicadicola." In some cicada species, Hodgkinia has fragmented into multiple distinct but interdependent cellular and genomic lineages that can differ in abundance by more than two orders of magnitude. This complexity presents a potential problem for the host cicada, because low-abundance but essential Hodgkinia lineages risk being lost during the symbiont transmission bottleneck from mother to egg. Here we show that all cicada eggs seem to receive the full complement of Hodgkinia lineages, and that in cicadas with more complex Hodgkinia this outcome is achieved by increasing the number of Hodgkinia cells transmitted by up to 6-fold. We further show that cicada species with varying Hodgkinia complexity do not visibly alter their transmission mechanism at the resolution of cell biological structures. Together these data suggest that a major cicada adaptation to changes in endosymbiont complexity is an increase in the number of Hodgkinia cells transmitted to each egg. We hypothesize that the requirement to increase the symbiont titer is one of the costs associated with Hodgkinia fragmentation.IMPORTANCE Sap-feeding insects critically rely on one or more bacteria or fungi to provide essential nutrients that are not available at sufficient levels in their diets. These microbes are passed between insect generations when the mother places a small packet of microbes into each of her eggs before it is laid. We have previously described an unusual lineage fragmentation process in a nutritional endosymbiotic bacterium of cicadas called Hodgkinia In some cicadas, a single Hodgkinia lineage has split into numerous related lineages, each performing a subset of original function and therefore each required for normal host function. Here we test how this splitting process affects symbiont transmission to eggs. We find that cicadas dramatically increase the titer of Hodgkinia cells passed to each egg in response to lineage fragmentation, and we hypothesize that this increase in bacterial cell count is one of the major costs associated with endosymbiont fragmentation.


Subject(s)
Hemiptera/microbiology , Hemiptera/physiology , Host Microbial Interactions , Symbiosis , Alphaproteobacteria/genetics , Animals , Evolution, Molecular , Female , Genome, Bacterial , Ovum/microbiology , Phylogeny
19.
Proc Natl Acad Sci U S A ; 115(26): E5970-E5979, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891654

ABSTRACT

Diverse insects are associated with ancient bacterial symbionts, whose genomes have often suffered drastic reduction and degeneration. In extreme cases, such symbiont genomes seem almost unable to sustain the basic cellular functioning, which comprises an open question in the evolution of symbiosis. Here, we report an insect group wherein an ancient symbiont lineage suffering massive genome erosion has experienced recurrent extinction and replacement by host-associated pathogenic microbes. Cicadas are associated with the ancient bacterial co-obligate symbionts Sulcia and Hodgkinia, whose streamlined genomes are specialized for synthesizing essential amino acids, thereby enabling the host to live on plant sap. However, our inspection of 24 Japanese cicada species revealed that while all species possessed Sulcia, only nine species retained Hodgkinia, and their genomes exhibited substantial structural instability. The remaining 15 species lacked Hodgkinia and instead harbored yeast-like fungal symbionts. Detailed phylogenetic analyses uncovered repeated Hodgkinia-fungus and fungus-fungus replacements in cicadas. The fungal symbionts were phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, identifying entomopathogenic origins of the fungal symbionts. Most fungal symbionts of cicadas were uncultivable, but the fungal symbiont of Meimuna opalifera was cultivable, possibly because it is at an early stage of fungal symbiont replacement. Genome sequencing of the fungal symbiont revealed its metabolic versatility, presumably capable of synthesizing almost all amino acids, vitamins, and other metabolites, which is more than sufficient to compensate for the Hodgkinia loss. These findings highlight a straightforward ecological and evolutionary connection between parasitism and symbiosis, which may provide an evolutionary trajectory to renovate deteriorated ancient symbiosis via pathogen domestication.


Subject(s)
Alphaproteobacteria/metabolism , Ascomycota/metabolism , Biological Evolution , Flavobacteriaceae/metabolism , Hemiptera/microbiology , Symbiosis , Alphaproteobacteria/cytology , Animals , Ascomycota/cytology , Flavobacteriaceae/cytology
20.
Proc Natl Acad Sci U S A ; 115(2): E226-E235, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279407

ABSTRACT

Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena/genetics , Hemiptera/microbiology , Symbiosis/physiology , Animals , Biological Evolution , Chile , Genetic Variation , Genome, Bacterial , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...